
Cindy Sridharan

A Guide to Building Robust Systems

Distributed
Systems
Observability

Compliments of

Cindy Sridharan

Distributed Systems
Observability

A Guide to Building Robust Systems

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03340-0

[LSI]

Distributed Systems Observability
by Cindy Sridharan

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Development Editor: Virginia Wilson
Production Editor: Justin Billing
Copyeditor: Amanda Kersey
Proofreader: Sharon Wilkey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
Tech Reviewers: Jamie Wilkinson
and Cory Watson

May 2018: First Edition

Revision History for the First Edition
2018-05-11: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Distributed Systems Observability,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsi‐
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Humio. See our statement of editorial inde‐
pendence.

Table of Contents

1. The Need for Observability. 1
What Is Observability? 2
Observability Isn’t Purely an Operational Concern 3
Conclusion 3

2. Monitoring and Observability. 5
Alerting Based on Monitoring Data 6
Best Practices for Alerting 7
Conclusion 9

3. Coding and Testing for Observability. 11
Coding for Failure 12
Testing for Failure 13
Conclusion 15

4. The Three Pillars of Observability. 17
Event Logs 17
Metrics 21
Tracing 24
The Challenges of Tracing 27
Conclusion 28

5. Conclusion. 29

iii

CHAPTER 1

The Need for Observability

Infrastructure software is in the midst of a paradigm shift. Containers, orchestra‐
tors, microservices architectures, service meshes, immutable infrastructure, and
functions-as-a-service (also known as “serverless”) are incredibly promising ideas
that fundamentally change the way software is built and operated. As a result of
these advances, the systems being built across the board—at companies large and
small—have become more distributed, and in the case of containerization, more
ephemeral.

Systems are being built with different reliability targets, requirements, and guar‐
antees. Soon enough, if not already, the network and underlying hardware fail‐
ures will be robustly abstracted away from software developers. This leaves
software development teams with the sole responsibility of ensuring that their
applications are good enough to make capital out of the latest and greatest in net‐
working and scheduling abstractions.

In other words, better resilience and failure tolerance from off-the-shelf compo‐
nents means that—assuming said off-the-shelf components have been under‐
stood and configured correctly—most failures not addressed by application
layers within the callstack will arise from the complex interactions between vari‐
ous applications. Most organizations are at the stage of early adoption of cloud
native technologies, with the failure modes of these new paradigms still remain‐
ing somewhat nebulous and not widely advertised. To successfully maneuver this
brave new world, gaining visibility into the behavior of applications becomes
more pressing than ever before for software development teams.

Monitoring of yore might have been the preserve of operations engineers, but
observability isn’t purely an operational concern. This is a book authored by a
software engineer, and the target audience is primarily other software developers,
not solely operations engineers or site reliability engineers (SREs). This book
introduces the idea of observability, explains how it’s different from traditional

1

operations-centric monitoring and alerting, and most importantly, why it’s so
topical for software developers building distributed systems.

What Is Observability?
Observability might mean different things to different people. For some, it’s about
logs, metrics, and traces. For others, it’s the old wine of monitoring in a new bot‐
tle. The overarching goal of various schools of thought on observability, however,
remains the same—bringing better visibility into systems.

Observability Is Not Just About Logs, Metrics, and Traces

Logs, metrics, and traces are useful tools that help with testing, under‐
standing, and debugging systems. However, it’s important to note that
plainly having logs, metrics, and traces does not result in observable
systems.

In its most complete sense, observability is a property of a system that has been
designed, built, tested, deployed, operated, monitored, maintained, and evolved
in acknowledgment of the following facts:

• No complex system is ever fully healthy.
• Distributed systems are pathologically unpredictable.
• It’s impossible to predict the myriad states of partial failure various parts of

the system might end up in.
• Failure needs to be embraced at every phase, from system design to imple‐

mentation, testing, deployment, and, finally, operation.
• Ease of debugging is a cornerstone for the maintenance and evolution of

robust systems.

The Many Faces of Observability
The focus of this report is on logs, metrics, and traces. However, these aren’t the
only observability signals. Exception trackers like the open source Sentry can be
invaluable, since they furnish information about thread-local variables and exe‐
cution stack traces in addition to grouping and de-duplicating similar errors or
exceptions in the UI.

Detailed profiles (such as CPU profiles or mutex contention profiles) of a process
are sometimes required for debugging. This report does not cover techniques
such as SystemTap or DTrace, which are of great utility for debugging standalone
programs on a single machine, since such techniques often fall short while
debugging distributed systems as a whole.

2 | Chapter 1: The Need for Observability

Also outside the scope of this report are formal laws of performance modeling
such as universal scalability law, Amdahl’s law, or concepts from queuing theory
such as Little’s law. Kernel-level instrumentation techniques, compiler inserted
instrumentation points in binaries, and so forth are also outside the scope of this
report.

Observability Isn’t Purely an Operational Concern
An observable system isn’t achieved by plainly having monitoring in place, nor is
it achieved by having an SRE team carefully deploy and operate it.

Observability is a feature that needs to be enshrined into a system at the time of
system design such that:

• A system can be built in a way that lends itself well to being tested in a realis‐
tic manner (which involves a certain degree of testing in production).

• A system can be tested in a manner such that any of the hard, actionable fail‐
ure modes (the sort that often result in alerts once the system has been
deployed) can be surfaced during the time of testing.

• A system can be deployed incrementally and in a manner such that a roll‐
back (or roll forward) can be triggered if a key set of metrics deviate from the
baseline.

• And finally, post-release, a system can be able to report enough data points
about its health and behavior when serving real traffic, so that the system can
be understood, debugged, and evolved.

None of these concerns are orthogonal; they all segue into each other. As such,
observability isn’t purely an operational concern.

Conclusion
Observability isn’t the same as monitoring, but does that mean monitoring is
dead? In the next chapter, we’ll discuss why observability does not obviate the
need for monitoring, as well as some best practices for monitoring.

Observability Isn’t Purely an Operational Concern | 3

CHAPTER 2

Monitoring and Observability

No discussion on observability is complete without contrasting it to monitoring.
Observability isn’t a substitute for monitoring, nor does it obviate the need for
monitoring; they are complementary. The goals of monitoring and observability,
as shown in Figure 2-1, are different.

Figure 2-1. Observability is a superset of both monitoring and testing; it provides
information about unpredictable failure modes that couldn’t be monitored for
or tested

Observability is a superset of monitoring. It provides not only high-level over‐
views of the system’s health but also highly granular insights into the implicit fail‐
ure modes of the system. In addition, an observable system furnishes ample
context about its inner workings, unlocking the ability to uncover deeper, sys‐
temic issues.

5

Monitoring, on the other hand, is best suited to report the overall health of sys‐
tems and to derive alerts.

Alerting Based on Monitoring Data
Alerting is inherently both failure- and human-centric. In the past, it made sense
to “monitor” for and alert on symptoms of system failure that:

• Were of the predictable nature
• Would seriously affect users
• Required human intervention to be remedied as soon as possible

Systems becoming more distributed has led to the advent of sophisticated tooling
and platforms that abstract away several of the problems that human- and
failure-centric monitoring of yore helped uncover. Health-checking, load balanc‐
ing, and taking failed services out of rotation are features that platforms like
Kubernetes provide out of the box, freeing operators from needing to be alerted
on such failures.

Blackbox and Whitebox Monitoring
Traditionally, much of alerting was derived from blackbox monitoring. Blackbox
monitoring refers to observing a system from the outside—think Nagios-style
checks. This type of monitoring is useful in being able to identify the symptoms
of a problem (e.g., “error rate is up” or “DNS is not resolving”), but not the trig‐
gers across various components of a distributed system that led to the symptoms.

Whitebox monitoring refers to techniques of reporting data from inside a system.
For systems internal to an organization, alerts derived from blackbox monitoring
techniques are slowly but surely falling out of favor, as the data reported by sys‐
tems can result in far more meaningful and actionable alerts compared to alerts
derived from external pings. However, blackbox monitoring still has its place, as
some parts (or even all) of infrastructure are increasingly being outsourced to
third-party software that can be monitored only from the outside.

However, there’s a paradox: even as infrastructure management has become more
automated and requires less human elbow grease, understanding the lifecycle of
applications is becoming harder. The failure modes now are of the sort that
can be:

• Tolerated, owing to relaxed consistency guarantees with mechanisms like
eventual consistency or aggressive multitiered caching

6 | Chapter 2: Monitoring and Observability

• Alleviated with graceful degradation mechanisms like applying backpressure,
retries, timeouts, circuit breaking, and rate limiting

• Triggered deliberately with load shedding in the event of increased load that
has the potential to take down a service entirely

Building systems on top of relaxed guarantees means that such systems are, by
design, not necessarily going to be operating while 100% healthy at any given
time. It becomes unnecessary to try to predict every possible way in which a sys‐
tem might be exercised that could degrade its functionality and alert a human
operator. It’s now possible to design systems where only a small sliver of the over‐
all failure domain is of the hard, urgently human-actionable sort. Which begs the
question: where does that leave alerting?

Best Practices for Alerting
Alerting should still be both hard failure–centric and human-centric. The goal of
using monitoring data for alerting hasn’t changed, even if the scope of alerting
has shrunk.

Monitoring data should at all times provide a bird’s-eye view of the overall health
of a distributed system by recording and exposing high-level metrics over time
across all components of the system (load balancers, caches, queues, databases,
and stateless services). Monitoring data accompanying an alert should provide
the ability to drill down into components and units of a system as a first port of
call in any incident response to diagnose the scope and coarse nature of any fault.

Additionally, in the event of a failure, monitoring data should immediately be
able to provide visibility into the impact of the failure as well as the effect of any
fix deployed.

Lastly, for the on-call experience to be humane and sustainable, all alerts (and
monitoring signals used to derive them) need to actionable.

What Monitoring Signals to Use for Alerting?
A good set of metrics used for monitoring purposes are the USE metrics and the
RED metrics. In the book Site Reliability Engineering (O’Reilly), Rob Ewaschuk
proposed the four golden signals (latency, errors, traffic, and saturation) as the
minimum viable signals to monitor for alerting purposes.

The USE methodology for analyzing system performance was coined by Brendan
Gregg. The USE method calls for measuring utilization, saturation, and errors of
primarily system resources, such as available free memory (utilization), CPU run
queue length (saturation), or device errors (errors).

Best Practices for Alerting | 7

The RED method was proposed by Tom Wilkie, who claims it was “100% based
on what I learned as a Google SRE.” The RED method calls for monitoring the
request rate, error rate, and duration of request (generally represented via a histo‐
gram), and is necessary for monitoring request-driven, application-level metrics.

Debugging “Unmonitorable” Failures
The key to understanding the pathologies of distributed systems that exist in a
constant state of elasticity and entropy is to be able to debug armed with evidence
rather than conjecture or hypothesis. The degree of a system’s observability is the
degree to which it can be debugged.

Debugging is often an iterative process that involves the following:

• Starting with a high-level metric
• Being able to drill down by introspecting various fine-grained, contextual

observations reported by various parts of the system
• Being able to make the right deductions
• Testing whether the theory holds water

Evidence cannot be conjured out of thin air, nor can it be extrapolated from
aggregates, averages, percentiles, historic patterns, or any other forms of data pri‐
marily collected for monitoring.

An unobservable can prove to be impossible to debug when it fails in a way that
one couldn’t proactively monitor.

Observability Isn’t a Panacea
Brian Kernighan famously wrote in the book Unix for Beginners in 1979:

The most effective debugging tool is still careful thought, coupled with judiciously
placed print statements.

When debugging a single process running on a single machine, tools like GDB
helped one observe the state of the application given its inputs. When it comes to
distributed systems, in the absence of a distributed debugger, observability data
from the various components of the system is required to be able to effectively
debug such systems.

It’s important to state that observability doesn’t obviate the need for careful
thought. Observability data points can lead a developer to answers. However, the
process of knowing what information to expose and how to examine the evi‐
dence (observations) at hand—to deduce likely answers behind a system’s
idiosyncrasies in production—still requires a good understanding of the system
and domain, as well as a good sense of intuition.

8 | Chapter 2: Monitoring and Observability

More importantly, the dire need for higher-level abstractions (such as good visu‐
alization tooling) to make sense of the mountain of disparate data points from
various sources cannot be overstated.

Conclusion
Observability isn’t the same as monitoring. Observability also isn’t a purely
operational concern. In the next chapter, we’ll explore how to incorporate
observability into a system at the time of system design, coding, and testing.

Conclusion | 9

CHAPTER 3

Coding and Testing for Observability

Historically, testing has been something that referred to a pre-production or pre-
release activity. Some companies employed—and continue to employ—dedicated
teams of testers or QA engineers to perform manual or automated tests for the
software built by development teams. Once a piece of software passed QA, it was
handed over to the operations team to run (in the case of services) or shipped as
a product release (in the case of desktop software or games).

This model is slowly but surely being phased out (at least as far as services go).
Development teams are now responsible for testing as well as operating the serv‐
ices they author. This new model is incredibly powerful. It truly allows develop‐
ment teams to think about the scope, goal, trade-offs, and payoffs of the entire
spectrum of testing in a manner that’s realistic as well as sustainable. To craft a
holistic strategy for understanding how services function and to gain confidence
in their correctness before issues surface in production, it becomes salient to be
able to pick and choose the right subset of testing techniques given the availabil‐
ity, reliability, and correctness requirements of the service.

Software developers are acclimatized to the status quo of upholding production
as sacrosanct and not to be fiddled around with, even if that means they always
verify in environments that are, at best, a pale imitation of the genuine article
(production). Verifying in environments kept as identical to production as possi‐
ble is akin to a dress rehearsal; while there are some benefits to this, it’s not quite
the same as performing in front of a full house.

Pre-production testing is something ingrained in software engineers from the
very beginning of their careers. The idea of experimenting with live traffic is
either seen as the preserve of operations engineers or is something that’s met with
alarm. Pushing some amount of regression testing to post-production monitor‐
ing requires not just a change in mindset and a certain appetite for risk, but more

11

importantly an overhaul in system design, along with a solid investment in good
release engineering practices and tooling.

In other words, it involves not just architecting for failure, but, in essence, coding
and testing for failure when the default was coding (and testing) for success.

Coding for Failure
Coding for failure entails acknowledging that systems will fail, being able to
debug such failures is of paramount importance, and enshrining debuggability
into the system from the ground up. It boils down to three things:

• Understanding the operational semantics of the application
• Understanding the operational characteristics of the dependencies
• Writing code that’s debuggable

Operational Semantics of the Application
Focusing on the operational semantics of an application requires developers and
SREs to consider:

• How a service is deployed and with what tooling
• Whether the service is binding to port 0 or to a standard port
• How an application handles signals
• How process starts on a given host
• How it registers with service discovery
• How it discovers upstreams
• How the service is drained off connections when it’s about to exit
• How graceful (or not) the restarts are
• How configuration—both static and dynamic—is fed to the process
• The concurrency model of the application (multithreaded, purely single

threaded and event driven, actor based, or a hybrid model)
• The way the reverse proxy in front of the application handles connections

(pre-forked, versus threaded, versus process based)

Many organizations see these questions as something that’s best abstracted away
from developers with the help of either platforms or standardized tooling. Per‐
sonally, I believe having at least a baseline understanding of these concepts can
greatly help software engineers.

12 | Chapter 3: Coding and Testing for Observability

Operational Characteristics of the Dependencies
We build on top of increasingly leaky abstractions with failure modes that are not
well understood. Here are some examples of such characteristics I’ve had to be
conversant with in the last several years:

• The default read consistency mode of the Consul client library (the default is
usually “strongly consistent,” which isn’t something you necessarily want for
service discovery)

• The caching guarantees offered by an RPC client or the default TTLs
• The threading model of the official Confluent Python Kafka client and the

ramifications of using it in a single-threaded Python server
• The default connection pool size setting for pgbouncer, how connections are

reused (the default is LIFO), and whether that default is the best option for
the given Postgres installation topology

Understanding such dependencies better has sometimes meant changing only a
single line of configuration somewhere or overriding the default provided by a
library, but the reliability gains from changes have been immense.

Debuggable Code
Writing debuggable code involves being able to ask questions in the future, which
in turn involves the following:

• Having an understanding of the instrumentation format of choice (be it met‐
rics or logs or exception trackers or traces or a combination of these) and its
pros and cons

• Being able to pick the best instrumentation format given the requirements of
the given service and the operational quirks of the dependencies

This can be daunting, and coding accordingly (and more crucially, being able to
test accordingly) entails being able to appreciate these challenges and to address
them head-on at the time of writing code.

Testing for Failure
It’s important to understand that testing is a best-effort verification of the correct‐
ness of a system as well as a best-effort simulation of failure modes. It’s impossi‐
ble to predict every possible way in which a service might fail and write a
regression test case for it, as E. W. Dijkstra has pointed out:

The first moral of the story is that program testing can be used very effectively to
show the presence of bugs but never to show their absence.

Testing for Failure | 13

Unit tests only ever test the behavior of a system against a specified set of inputs.
Furthermore, tests are conducted in very controlled (often heavily mocked) envi‐
ronments. While the few who do fuzz their code benefit from having their code
tested against a set of randomly generated input, fuzzing can comprehensively
test against the set of inputs to only one service. End-to-end testing might allow
for some degree of holistic testing of the system, but complex systems fail in
complex ways, and there is no testing under the sun that enables one to predict
every last vector that could contribute toward a failure.

This isn’t to suggest that testing is useless. If nothing else, testing enables one to
write better, maintainable code. More importantly, research has shown that
something as simple as “testing error handling code could have prevented 58% of
catastrophic failures” in many distributed systems. The renaissance of tooling
aimed to understand the behavior of our services in production does not obviate
the need for pre-production testing.

However, it’s becoming increasingly clear that a sole reliance on pre-production
testing is largely ineffective in surfacing even the known-unknowns of a system.
Testing for failure, as such, involves acknowledging that certain types of failures
can only be surfaced in the production environment.

Testing in production has a certain stigma and negative connotations linked to
cowboy programming, insufficient or absent unit and integration testing, as well
as a certain recklessness or lack of care for the end-user experience.

When done poorly or haphazardly, “testing in production” does, in fact, very
much live up to this reputation. Testing in production is by no means a substitute
for pre-production testing, nor is it, by any stretch, easy. Being able to success‐
fully and safely test in production requires a significant amount of diligence and
rigor, a firm understanding of best practices, as well as systems designed from the
ground up to lend themselves well to this form of testing.

In order to be able to craft a holistic and safe process to effectively test services in
production, it becomes salient to not treat “testing in production” as a broad
umbrella term to refer to a ragbag of tools and techniques.

“Testing in production” encompasses the entire gamut of techniques across three
distinct phases: deploy, release, and post-release (Figure 3-1).

14 | Chapter 3: Coding and Testing for Observability

Figure 3-1. The three phases of testing in production

The scope of this report doesn’t permit me to delve deeper into the topic of test‐
ing in production, but for those interested in learning more, I’ve written a
detailed post about the topic.

The overarching fact about testing in production is that it’s impossible to do so
without measuring how the system under test is performing in production. Being
able to test in production requires that testing be halted if the need arises. This in
turn means that one can test in production only if one has the following:

• A quick feedback loop about the behavior of the system under test
• The ability to be on the lookout for changes to key performance indicators of

the system

For an HTTP service, this could mean attributes like error rate and latencies of
key endpoints. For a user-facing service, this could additionally mean a change in
user engagement. Put differently, testing in production essentially means proac‐
tively “monitoring” the test that’s happening in production.

Conclusion
Testing in production might seem daunting, way above the pay grade of most
engineering organizations. The goal of testing in production isn’t to eliminate all
manner of system failures. It’s also not something one gets for free. While not

Conclusion | 15

easy or risk-free, undertaken meticulously, testing in production can greatly
build confidence in the reliability of complex distributed systems.

16 | Chapter 3: Coding and Testing for Observability

CHAPTER 4

The Three Pillars of Observability

Logs, metrics, and traces are often known as the three pillars of observability.
While plainly having access to logs, metrics, and traces doesn’t necessarily make
systems more observable, these are powerful tools that, if understood well, can
unlock the ability to build better systems.

Event Logs
An event log is an immutable, timestamped record of discrete events that hap‐
pened over time. Event logs in general come in three forms but are fundamen‐
tally the same: a timestamp and a payload of some context. The three forms are:

Plaintext
A log record might be free-form text. This is also the most common format
of logs.

Structured
Much evangelized and advocated for in recent days. Typically, these logs are
emitted in the JSON format.

Binary
Think logs in the Protobuf format, MySQL binlogs used for replication and
point-in-time recovery, systemd journal logs, the pflog format used by the
BSD firewall pf that often serves as a frontend to tcpdump.

Debugging rare or infrequent pathologies of systems often entails debugging at a
very fine level of granularity. Event logs, in particular, shine when it comes to
providing valuable insight along with ample context into the long tail that aver‐
ages and percentiles don’t surface. As such, event logs are especially helpful for
uncovering emergent and unpredictable behaviors exhibited by components of a
distributed system.

17

Failures in complex distributed systems rarely arise because of one specific event
happening in one specific component of the system. Often, various possible trig‐
gers across a highly interconnected graph of components are involved. By simply
looking at discrete events that occurred in any given system at some point in
time, it becomes impossible to determine all such triggers. To nail down the dif‐
ferent triggers, one needs to be able to do the following:

• Start with a symptom pinpointed by a high-level metric or a log event in a
specific system

• Infer the request lifecycle across different components of the distributed
architecture

• Iteratively ask questions about interactions among various parts of the sys‐
tem

In addition to inferring the fate of a request throughout its lifecycle (which is
usually short lived), it also becomes necessary to be able to infer the fate of a sys‐
tem as a whole (measured over a duration that is orders of magnitudes longer
than the lifecycle of a single request).

Traces and metrics are an abstraction built on top of logs that pre-process and
encode information along two orthogonal axes, one being request-centric (trace),
the other being system-centric (metric).

The Pros and Cons of Logs
Logs are, by far, the easiest to generate. The fact that a log is just a string or a blob
of JSON or typed key-value pairs makes it easy to represent any data in the form
of a log line. Most languages, application frameworks, and libraries come with
support for logging. Logs are also easy to instrument, since adding a log line is as
trivial as adding a print statement. Logs perform really well in terms of surfacing
highly granular information pregnant with rich local context, so long as the
search space is localized to events that occurred in a single service.

The utility of logs, unfortunately, ends right there. While log generation might be
easy, the performance idiosyncrasies of various popular logging libraries leave a
lot to be desired. Most performant logging libraries allocate very little, if any, and
are extremely fast. However, the default logging libraries of many languages and
frameworks are not the cream of the crop, which means the application as a
whole becomes susceptible to suboptimal performance due to the overhead of
logging. Additionally, log messages can also be lost unless one uses a protocol like
RELP to guarantee reliable delivery of messages. This becomes especially impor‐
tant when log data is used for billing or payment purposes.

18 | Chapter 4: The Three Pillars of Observability

RELP Isn’t a Silver Bullet

RELP is a protocol that uses a command-response model (the com‐
mand and the response is called a RELP transaction). The RELP client
issues commands, and the RELP server responds to these commands.
The RELP server is designed to throttle the number of outstanding
commands to conserve resources. Opting to use RELP means making
the choice to apply backpressure and block the producers if the server
can’t process the commands being issued fast enough.
While such stringent requirements might apply to scenarios when every
log line is critical or is legally required for auditing purposes, monitor‐
ing and debugging rarely, if ever, calls for such strict guarantees and the
attendant complexity.

Last, unless the logging library can dynamically sample logs, logging excessively
has the capability to adversely affect application performance as a whole. This is
exacerbated when the logging isn’t asynchronous and request processing is
blocked while writing a log line to disk or stdout.

To Sample, or Not To Sample?
An antidote often proposed to the cost overhead of logging is to sample intelli‐
gently. Sampling is the technique of picking a small subset of the total population
of event logs generated to be processed and stored. This subset is expected to be a
microcosm of the corpus of events generated in a system.

Sampling isn’t without its fair share of issues. For one, the efficacy of the sampled
dataset is contingent on the chosen keys or features of the dataset based on which
the sampling decision is made. Furthermore, for most online services, it becomes
necessary to determine how to dynamically sample so that the sample rate is self-
adjusting based on the shape of the incoming traffic. Many latency-sensitive sys‐
tems have stringent bounds on, for instance, the amount of CPU time that can be
spent on emitting observability data. In such scenarios, sampling can prove to be
computationally expensive.

No talk on sampling is complete without mentioning probabilistic data structures
capable of storing a summary of the entire dataset. In-depth discussion of these
techniques is outside the scope of this report, but there are good O’Reilly resour‐
ces for those curious to learn more.

On the processing side, raw logs are almost always normalized, filtered, and pro‐
cessed by a tool like Logstash, fluentd, Scribe, or Heka before they’re persisted in
a data store like Elasticsearch or BigQuery. If an application generates a large vol‐
ume of logs, then the logs might require further buffering in a broker like Kafka

Event Logs | 19

before they can be processed by Logstash. Hosted solutions like BigQuery have
quotas one cannot exceed.

On the storage side, while Elasticsearch might be a fantastic search engine, run‐
ning it carries a real operational cost. Even if an organization is staffed with a
team of operations engineers who are experts in operating Elasticsearch, other
drawbacks may exist. Case in point: it’s not uncommon to see a sharp downward
slope in the graphs in Kibana, not because traffic to the service is dropping, but
because Elasticsearch cannot keep up with the indexing of the sheer volume of
data being thrown at it. Even if log ingestion processing isn’t an issue with Elas‐
ticsearch, no one I know of seems to have fully figured out how to use Kibana’s
UI, let alone enjoy using it.

Logging as a Stream Processing Problem
Event data isn’t used exclusively for application performance and debugging use
cases. It also forms the source of all analytics data. This data is often of tremen‐
dous utility from a business intelligence perspective, and usually businesses are
willing to pay for both the technology and the personnel required to make sense
of this data in order to make better product decisions.

The interesting aspect here is that there are striking similarities between ques‐
tions a business might want answered and questions software engineers and SREs
might want answered during debugging. For example, here is a question that
might be of business importance:

Filter to outlier countries from where users viewed this article fewer than 100
times in total.

Whereas, from a debugging perspective, the question might look more like this:
Filter to outlier page loads that performed more than 100 database queries.
Show me only page loads from France that took more than 10 seconds to load.

Both these queries are made possible by events. Events are structured (optionally
typed) key-value pairs. Marrying business information along with information
about the lifetime of the request (timers, durations, and so forth) makes it possi‐
ble to repurpose analytics tooling for observability purposes.

Log processing neatly fits into the bill of Online Analytics Processing (OLAP).
Information derived from OLAP systems is not very different from information
derived for debugging or performance analysis or anomaly detection at the edge
of the system. One way to circumvent the issue with ingest delay in Elasticsearch
—or indexing-based stores in general—is by treating log processing as a stream
processing problem to deal with large data volumes by using minimal indexing.

20 | Chapter 4: The Three Pillars of Observability

Most analytics pipelines use Kafka as an event bus. Sending enriched event data
to Kafka allows one to search in real time over streams with KSQL, a streaming
SQL engine for Kafka.

Enriching business events that go into Kafka with additional timing and other
metadata required for observability use cases can be helpful when repurposing
existing stream processing infrastructures. A further benefit this pattern provides
is that this data can be expired from the Kafka log regularly. Most event data
required for debugging purposes are valuable only for a relatively short period of
time after the event has been generated, unlike any business-centric information
that is evaluated and persisted by an ETL job. Of course, this makes sense only
when Kafka already is an integral part of an organization. Introducing Kafka into
a stack purely for real-time log analytics is a bit of an overkill, especially in non-
JVM shops without any significant JVM operational expertise.

An alternative is Humio, a hosted and on-premises solution that treats log pro‐
cessing as a stream processing problem. Log data can be streamed from each
machine directly into Humio without any pre-aggregation. Humio uses sophisti‐
cated compression algorithms to effectively compress and retrieve the log data.
Instead of a priori indexing, Humio allows for real-time, complex queries on
event stream data. Since Humio supports text-based logs (the format that the vast
majority of developers are used to grepping), ad hoc schema on reads allows
users to iteratively and interactively query log data. Yet another alternative is
Honeycomb, a hosted solution based on Facebook’s Scuba that takes an opinion‐
ated view of accepting only structured events, but allows for read-time aggrega‐
tion and blazing fast real-time queries over millions of events.

Metrics
Metrics are a numeric representation of data measured over intervals of time.
Metrics can harness the power of mathematical modeling and prediction to
derive knowledge of the behavior of a system over intervals of time in the present
and future.

Since numbers are optimized for storage, processing, compression, and retrieval,
metrics enable longer retention of data as well as easier querying. This makes
metrics perfectly suited to building dashboards that reflect historical trends. Met‐
rics also allow for gradual reduction of data resolution. After a certain period of
time, data can be aggregated into daily or weekly frequency.

The Anatomy of a Modern Metric
One of the biggest drawbacks of historical time-series databases has been the
identification of metrics that didn’t lend itself very well to exploratory analysis or
filtering.

Metrics | 21

The hierarchical metric model and the lack of tags or labels in older versions of
Graphite especially hurt. Modern monitoring systems like Prometheus and
newer versions of Graphite represent every time series using a metric name as
well as additional key-value pairs called labels. This allows for a high degree of
dimensionality in the data model.

A metric in Prometheus, as shown in Figure 4-1, is identified using both the met‐
ric name and the labels. The actual data stored in the time series is called a sam‐
ple, and it consists of two components: a float64 value and a millisecond precision
timestamp.

Figure 4-1. A Prometheus metric sample

It’s important to bear in mind that metrics in Prometheus are immutable. Chang‐
ing the name of the metric or adding or removing a label will result in a new time
series.

Advantages of Metrics over Event Logs
By and large, the biggest advantage of metrics-based monitoring over logs is that
unlike log generation and storage, metrics transfer and storage has a constant
overhead. Unlike logs, the cost of metrics doesn’t increase in lockstep with user
traffic or any other system activity that could result in a sharp uptick in data.

With metrics, an increase in traffic to an application will not incur a significant
increase in disk utilization, processing complexity, speed of visualization, and
operational costs the way logs do. Metrics storage increases with more permuta‐
tions of label values (e.g., when more hosts or containers are spun up, or when
new services get added or when existing services get instrumented more), but
client-side aggregation can ensure that metric traffic doesn’t increase proportion‐
ally with user traffic.

Client libraries of systems like Prometheus aggregate time-series sam‐
ples in-process and submit them to the Prometheus server upon a suc‐
cessful scrape (which by default happens once every few seconds and
can be configured). This is unlike statsd clients that send a UDP packet
every time a metric is recorded to the statsd daemon (resulting in a
directly proportional increase in the number of metrics being submitted
to statsd compared to the traffic being reported on!).

22 | Chapter 4: The Three Pillars of Observability

Metrics, once collected, are more malleable to mathematical, probabilistic, and
statistical transformations such as sampling, aggregation, summarization, and
correlation. These characteristics make metrics better suited to report the overall
health of a system.

Metrics are also better suited to trigger alerts, since running queries against an
in-memory, time-series database is far more efficient, not to mention more relia‐
ble, than running a query against a distributed system like Elasticsearch and then
aggregating the results before deciding if an alert needs to be triggered. Of
course, systems that strictly query only in-memory structured event data for
alerting might be a little less expensive than Elasticsearch. The downside here is
that the operational overhead of running a large, clustered, in-memory database,
even if it were open source, isn’t something worth the operational trouble for
most organizations, especially when there are far easier ways to derive equally
actionable alerts. Metrics are best suited to furnish this information.

The Drawbacks of Metrics
The biggest drawback with both application logs and application metrics is that
they are system scoped, making it hard to understand anything else other than
what’s happening inside a particular system. Sure, metrics can also be request
scoped, but that entails a concomitant increase in label fan-out, which results in
an increase in metric storage.

With logs without fancy joins, a single line doesn’t give much information about
what happened to a request across all components of a system. While it’s possible
to construct a system that correlates metrics and logs across the address space or
RPC boundaries, such systems require a metric to carry a UID as a label.

Using high cardinality values like UIDs as metric labels can overwhelm time-
series databases. Although the new Prometheus storage engine has been opti‐
mized to handle time-series churn, longer time-range queries will still be slow.
Prometheus was just an example. All popular existing time-series database solu‐
tions suffer performance under high cardinality labeling.

When used optimally, logs and metrics give us complete omniscience into a silo,
but nothing more. While these might be sufficient for understanding the perfor‐
mance and behavior of individual systems, both stateful and stateless, they aren’t
sufficient to understand the lifetime of a request that traverses multiple systems.

Distributed tracing is a technique that addresses the problem of bringing visibil‐
ity into the lifetime of a request across several systems.

Metrics | 23

Tracing
A trace is a representation of a series of causally related distributed events that
encode the end-to-end request flow through a distributed system.

Traces are a representation of logs; the data structure of traces looks almost like
that of an event log. A single trace can provide visibility into both the path trav‐
ersed by a request as well as the structure of a request. The path of a request
allows software engineers and SREs to understand the different services involved
in the path of a request, and the structure of a request helps one understand the
junctures and effects of asynchrony in the execution of a request.

Although discussions about tracing tend to pivot around its utility in a microser‐
vices environment, it’s fair to suggest that any sufficiently complex application
that interacts with—or rather, contends for—resources such as the network, disk,
or a mutex in a nontrivial manner can benefit from the advantages tracing pro‐
vides.

The basic idea behind tracing is straightforward—identify specific points (func‐
tion calls or RPC boundaries or segments of concurrency such as threads, contin‐
uations, or queues) in an application, proxy, framework, library, runtime,
middleware, and anything else in the path of a request that represents the follow‐
ing:

• Forks in execution flow (OS thread or a green thread)
• A hop or a fan out across network or process boundaries

Traces are used to identify the amount of work done at each layer while preserv‐
ing causality by using happens-before semantics. Figure 4-2 shows the flow of a
single request through a distributed system. The trace representation of this
request flow is shown in Figure 4-3. A trace is a directed acyclic graph (DAG) of
spans, where the edges between spans are called references.

Figure 4-2. A sample request flow diagram

24 | Chapter 4: The Three Pillars of Observability

Figure 4-3. The various components of a distributed system touched during the life‐
cycle of a request, represented as a directed acyclic graph

When a request begins, it’s assigned a globally unique ID, which is then propaga‐
ted throughout the request path so that each point of instrumentation is able to
insert or enrich metadata before passing the ID around to the next hop in the
meandering flow of a request. Each hop along the flow is represented as a span
(Figure 4-4). When the execution flow reaches the instrumented point at one of
these services, a record is emitted along with metadata. These records are usually
asynchronously logged to disk before being submitted out of band to a collector,
which then can reconstruct the flow of execution based on different records
emitted by different parts of the system.

Tracing | 25

Figure 4-4. A trace represented as spans: span A is the root span, span B is a child of
span A

Collecting this information and reconstructing the flow of execution while pre‐
serving causality for retrospective analysis and troubleshooting enables one to
better understand the lifecycle of a request.

Most importantly, having an understanding of the entire request lifecycle makes
it possible to debug requests spanning multiple services to pinpoint the source of
increased latency or resource utilization. For example, Figure 4-4 indicates that
the interaction between service C and service D was what took the longest.
Traces, as such, largely help one understand the which and sometimes even the
why (e.g., which component of a system is even touched during the lifecycle of a
request and is slowing the response?).

The use cases of distributed tracing are myriad. While used primarily for inter
service dependency analysis, distributed profiling, and debugging steady-state
problems, tracing can also help with chargeback and capacity planning.

Zipkin and Jaeger are two of the most popular OpenTracing-compliant open
source distributed tracing solutions. (OpenTracing is a vendor-neutral spec and
instrumentation libraries for distributed tracing APIs.)

26 | Chapter 4: The Three Pillars of Observability

The Challenges of Tracing
Tracing is, by far, the hardest to retrofit into an existing infrastructure, because
for tracing to be truly effective, every component in the path of a request needs to
be modified to propagate tracing information. Depending on whom you ask,
you’d either be told that having gaps in the flow of a request doesn’t outweigh the
cons (since adding tracing piecemeal is seen as better than having no tracing at
all, as having partial tracing helps eke out nuggets of knowledge from the fog of
war) or be told that these gaps are blind spots that make debugging harder.

The second problem with tracing instrumentation is that it’s not sufficient for
developers to instrument their code alone. A large number of applications in the
wild are built using open source frameworks or libraries that might require addi‐
tional instrumentation. This becomes all the more challenging at places with pol‐
yglot architectures, since every language, framework, and wire protocol with
widely disparate concurrency patterns and guarantees needs to cooperate.
Indeed, tracing is most successfully deployed in organizations that use a core set
of languages and frameworks uniformly across the company.

The cost of tracing isn’t quite as catastrophic as that of logging, mainly because
traces are almost always sampled heavily to reduce runtime overhead as well as
storage costs. Sampling decisions can be made:

• At the start of a request before any traces are generated
• At the end, after all participating systems have recorded the traces for the

entire course of the request execution
• Midway through the request flow, when only downstream services would

then report the trace

All approaches have their own pros and cons, and one might even want to use
them all.

Service Meshes: A New Hope for the Future?
While tracing has been difficult to implement, the rise of service meshes make
integrating tracing functionality almost effortless. Data planes of service meshes
implement tracing and stats collections at the proxy level, which allows one to
treat individual services as blackboxes but still get uniform and thorough observ‐
ability into the mesh as a whole. Applications that are a part of the mesh will still
need to forward headers to the next hop in the mesh, but no additional instru‐
mentation is necessary.

Lyft famously got tracing support for every last one of its services by adopting the
service mesh pattern, and the only change required at the application layer was to

The Challenges of Tracing | 27

forward certain headers. This pattern is incredibly useful for retrofitting tracing
into existing infrastructures with the least amount of code change.

Conclusion
Logs, metrics, and traces serve their own unique purpose and are complemen‐
tary. In unison, they provide maximum visibility into the behavior of distributed
systems. For example, it makes sense to have the following:

• A counter and log at every major entry and exit point of a request
• A log and trace at every decision point of a request

It also makes sense to have all three semantically linked such that it becomes pos‐
sible at the time of debugging:

• To reconstruct the codepath taken by reading a trace
• To dervive request or error ratios from any single point in the codepath

Sampling exemplars of traces or events and correlating to metrics unlocks the
ability to click through a metric, see examples of traces, and inspect the request
flow through various systems. Such insights gleaned from a combination of dif‐
ferent observability signals becomes a must-have to truly be able to debug dis‐
tributed systems.

28 | Chapter 4: The Three Pillars of Observability

CHAPTER 5

Conclusion

As my friend Brian Knox, who manages the Observability team at DigitalOcean,
said,

The goal of an Observability team is not to collect logs, metrics, or traces. It is to
build a culture of engineering based on facts and feedback, and then spread that
culture within the broader organization.

The same can be said about observability itself, in that it’s not about logs, metrics,
or traces, but about being data driven during debugging and using the feedback
to iterate on and improve the product.

The value of the observability of a system primarily stems from the business and
organizational value derived from it. Being able to debug and diagnose produc‐
tion issues quickly not only makes for a great end-user experience, but also paves
the way toward the humane and sustainable operability of a service, including the
on-call experience. A sustainable on-call is possible only if the engineers building
the system place primacy on designing reliability into a system. Reliability isn’t
birthed in an on-call shift.

For many, if not most, businesses, having a good alerting strategy and time-series
based “monitoring” is probably all that’s required to be able to deliver on these
goals. For others, being able to debug needle-in-a-haystack types of problems
might be what’s needed to generate the most value.

Observability, as such, isn’t an absolute. Pick your own observability target based
on the requirements of your services.

29

About the Author
Cindy Sridharan is a distributed systems engineer who works on building and
operating distributed systems. She likes thinking about building resilient and
maintainable systems and maintains a blog where she writes about her experi‐
ence building systems.

